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Introduction

This booklet is a grand summary of the paper
series [1-2]. It completes a former version [1] (volume
17), where ideas were described based on the first 16
volumes of the booklet series. At the present stage, we
are more advanced in the understanding of how
markets evolve at large and small time scales. We
have also presented more advanced concepts in
statistics. Therefore, a new completed version of [1]
(volume 17) makes sense. Also, we present all ideas
developed in [1-2] within the perspective of practical
system making. This booklet makes a complete
reference with clear milestones for system makers.

I. Introduction to Algorithmic Finance

As long as financial markets and data have
existed, people have tried to forecast them, in the
hope that good forecasts would provide a reasonable
anticipation of future events, within a given error
margin. Even in early 2012, the issue of forecasting is
still essential. For example, the European Central
Bank (ECB) is holding a dedicated workshop on
forecasting techniques in spring 2012. As we can read
from the announcement of the workshop, the goal is
to provide a forum for the presentation of both
theoretical and applied contributions that can help
identify new directions for forecasting, particularly
in the light of the issues raised by the recent financial
and sovereign debt crises. The ongoing turbulence in
the global economy, and especially in financial
markets, requires a critical assessment of existing
methods and the development of new paradigms in
order to provide reliable analytical support for
macroeconomic policy-makers. Then, the ability to
forecast future directions in the evolution of any
financial or economic indices, at macro or micro



levels, appears more than ever a key feature in
modern societies.

Interestingly, in a pure financial practice, what
matters most is not the question whether it is
possible to forecast, but how the future path of a
financial time series can be forecasted. At a theory
level, however, it is merely the question whether
series of speculative prices can be forecasted than the
question how to forecast. Therefore practice and
academics have proceeded along different paths in
studying financial time series data.

In the following, we will not make the distinction
between practice and theory: we define
“algorithmic finance” as the quantitative
analysis of financial time series with the
purpose to forecast statistically the future
evolution of this time series.

We do not even enter into the standard
opposition that arises from the so-called fundamental
and technical analysis. In fact, we can imagine
algorithms based on fundamental variables. More
generally, invariants in algorithmic finance can be
defined at fundamental or technical levels. The key
feature in our approach is that it must be quantitative.
This means that a set of rules are proposed at the end
of the analysis and these rules can be used as an
algorithm to extract results, either with the help of a
computer based program or analvtical calculations.
Practical examples are described extensively in the
next sections.

Let us introduce the notations used in this
booklet. The financial data series is labeled as:
x(t),x(t+dt),... where dt is the time step (or time
unit) we consider. As we are only interested into
intra-day dynamics of market prices, we shall only
consider time units of the orde of a few minutes.



Algorithmic finance is the quantitative analysis
of this set of data x(1) with the goal to forecast in
average at least a part of the evolution of x(t). The fact
that this problem has a solution in general is
obviously not granted. We discuss in following
sections general search methods needed to identify
significant deviations from randomness in the data.

II. Beyond randomness

Identifving the presence of non-randomness
effects in the data x(t) means that we need to be able
to disentangle background (randomness) with respect
to signal(s) (non-randomness). In the latter case,
when signals are identified, we are obviously in a
situation where forecasting the evolution of the time
series is possible. We can then produce anticipations
and build trading algorithms. In [1], we have defined a
general search mechanism that can be used quite
generically. In this section, we consider an example to
illustrate how this works.

The separation of signal and background
postpones that we have the ability to define what is
background and what is a signal in the time series
x(t). This is the first moment of the analysis where
imagination and ideas come in. In a next section, we
define more precisely the mathematical contents of
equations in algorithmic finance. Here, we assume
that two basic equations are known:

(a) Background hypothesis: dx = Sigma dW
where dW is a random walk (Wiener process of
Brownian motion) and Sigma the wvolatility of the
process. This is the null hypothesis, where x(t)
behaves as a pure background or equivalently a
random walk.

(b) Signal hvpothesis: dx = A(x-Rx) + Sigma
dW where the second term is described in (a) and the
first term represents the signal we intend to search



for in x(t). In this equation, Rx is the price range and
“A” is a coefficient that quantifies the deviation with
respect to the pure random walk. When A is
significantly non-zero and positive, this means that
prices are expulsed from the range Rx. Then, we tend
to have a range breakout phenomenon. On the
contrary, when A is negative, this means that prices
have a tendency to be contained within the range Rx.
The signal hypothesis is thus what we can call a range
breakout mechanism.

The imagination of the system maker comes
within the expression (b). The idea is to test a range
breakout mechanism in x(t) and we need to know
how to build this idea into an equation. We could start
from a very different idea and also obtain reasonable
results at the end. One idea does not exclude others.
However, the important point is that we need an input
from our own views.

In [1] we have then explored this idea based on
range breakout for intra-day data on commodity
futures based on (b). We have proposed a simple
generic algorithm that translates the idea into a well
defined procedure:

i. Define a range Rx on a given time unit;
ii. Search for a range contraction or
expansion;
iii. Use the item (ii) as a first trigger to search

for an expulsion of the range. This means buy when
the price is above the highest highs of the range
and sell is the price falls below the lowest lows of
the range. We can add an offset to the previous
requirement depending on the tick size;
iv. In addition, define stop loses and profit
limits (fixed or trailing) that protect and optimize
the strategy.

We have shown explicitly that this idea and



consequently the algorithm based on it provides very
good results on different commodity futures, like
Natural Gas, Platinum, Oil and Silver [1]. We remind
some of these trading algorithms in further sections.

In [1] (volume 26), we have shown how
random-walks can  perfectly mimic market
movements and technical analysis figures. In
particular, the display below is interesting:
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This correspond to DAX future contract on a one
day basis (full line) compared to a random walk
(dashed line) generated for the same sampling and
period of time. We observe that the movement of
the price is essentially random as it can be
described as such.

This shows in a clear and simple way the
necessary rigorous treatment of data on a statistical
basis to reject with high confidence level potential
fake moves.

II1.a Building equations - Principles

As explained in the previous section, it is an
important task to build and write equations starting
from ideas on the behavior of the market x(t). In this
booklet, we are not interested by the academic
formalism or any ad hoc theoretical formulations. On
the contrary, we want to show how our intuitions and



ideas can be put into formal terms and embedded into
market equations.

Formalism in itself is meaningless. In other
words, if we take an equation from a reference paper
and try to use this equation with no input from our
own views, this cannot work. We need to focus on the
ideas and then and only then build the formalism to
fit with our views.

We start from the most basic equation, a pure
random walk plus a drift. Then, the time series
defined above x(t) follows:

x(1)-x(t-dT)=dx=mu+Sigma dW(1) where
mu is the mean return of prices, Sigma the standard
deviation and W(t) is Wiener (Gaussian) process [1].
We can express dW(t) quite simply as:

dW(1) = dT2 G(t) where G(1) is a Gaussian
variable of mean zero and unit variance. To a large
extend, this corresponds to what we observe in most
financial data [2]: a price increment of the data (dx)
follows approximately a random walk (Sigma G(t)). In
general, for small time units at intra-day level, the
drift can be neglected. This equation is what we call in
general the background hvpothesis, or the default
hypothesis (no signal). At intra-day time scales
(mu=0), the above equation reads:

dx=Sigma dW(t)= Sigma dTYV2 G(t)

The probability distribution function (PDF)
associated to the price increment dx(t)=x(t)-x(t-dT) is
then a Gaussian distribution:

Pldx]=1/(2 pi Sigma2dT)¥2  exp[-
1/[2Sigma2dT] dx2]

Then, modifications to this basic equation can be



done.

i. If we want to study how a moving average
MA(x) reacts with respect to the price (expulsion or
attraction), we can write: dx=k[x-MA(x)]+Sigma
dW(1). For positive k, this means that the MA(x)
tends to expulse the price and inversely for
negative values of k. Of course, k needs to be
significantly non-zero for the effect to be visible
and not hidden by the volatility-stochastic term
‘Sigma dW'.

ii. If we are interested on the crossing of 2
moving averages MA1(x) and MA2(x) of different
lengths and how this crossing affects price
increments, we can write: dx=K[MA1(x)-
MA2(x)]+Sigma dW(t). The reasoning is exactly
the same as above. Again, the respective orders of
magnitude of terms ||K'[MA1(x)-MA2(x)]|| and
||Sigma dW(t)|| determine the visibilitv of the
effect of the MA crossing.

iii. As shown above, the trading range breakout
idea can be encoded very easily into an equation.

Till now, we have considered the stochastic term

as a pure random walk in writing, dx=x(t)-x(t-
dT)=Sigma dW(t), with W(t) a Wiener Gaussian
process: <dW2>=dT. In this case, increments are
completely independent. It is possible to relax this
hypothesis by considering more sophisticated

stochastic term which verifies: «‘-:d"WHE} = dr2H

with H=0.5 in case of pure random walk and H non
equal to 1/2 in the generalized case. The interest is
that it is then possible to encode novel effects like
persistence or mean-reverting phenomena into the
equation of motion for x(t) even if only the stochastic
term is present into the equation.

We can show that:



<dWg(t+h)dWy(t)>=2H(2H-1)h?H-2 for
large h.

Using standard definitions, H is called the Hurst
exponent and the case W[H.eq.1/2](t) is called a
Brownian Motion (BM) whereas the case
WI[H.ne.1/2](t) is called a fractional Brownian Motion
(FBM). From the formula above, we conclude
immediately that H>1/2 corresponds to
persistence: a positive (negative) increment is most
likely to be followed by a positive (negative) one,
which gives a trend following feature to the time
series W (t). On the contrary, H<1/2 corresponds

to anti-persistence: a positive (negative) move is
most likely to be followed by a negative (positive) one,
which gives a mean reverting feature to the time
series W (t).

The equation of motion: dx=x(t)-x(t-
dT)=Sigma dWp(1) can therefore be used to test

novel effects in the data. For example, we can test the
hypothesis of persistence effects by testing the
parameter space H>1/2 on the financial data series.
The search can be done following statistical methods
described in references [1]. A similar search can be
followed for mean-reverting effects with H<i1/2
parameter space.

We can generalize even further the above
equation. From the previous formalism we can write:

||x()-x(@-dT)|| = O(dTH) where | ua]|
represents a norm like the average of the absolute
value: <|u|>. Then, we define the moment of order g

of the time series x(t): in(dT) = <|x(1)-x(t-dT)|9>
/ <|x(1)]|9>.



As a first approximation, using the previous
formalism, we can write: qu(dT) = O(quH). In fact, a
more general form of this result can be considered
with the formula: qu(dT) = O(dT9H(®)) where

H:=H(q) is a priori a function of q. It is called the
generalized Hurst exponent.

The interest is that using moments of any orders
q, we can filter out the type of fluctuations of
the time series x(1): large values of q filter out to
large size fluctuations and low values of q filter out
small size fluctuations.

The idea is very simple: from the data series, we
extract qu.T) for different values of q. If H(q)

deviates from 0.5 for small values of q (for example),
we can conclude that small fluctuations in the series
x(t) are not compatible with a pure BM. In such case,
small size fluctuations are correlated. Also, if we find
that H(q)=0.5 for large values of q (for example
again), we can conclude that large fluctuations are
compatible with a pure BM and thus uncorrelated.

In addition, we have shown in [1] (volume 31)
that the exponent H is not only a measure of
persistence but also can be interpreted as a measure
of the mood on the market. Indeed, as H<i/2
characterizes the anti-persistent behavior, a
decreasing tend on H can be seen as an increasing
nervousness on the market. Similarly, an increasing H
can be seen as a support of the trend that has just
started. This is a very interesting property, derived
from our previous knowledge. It can bring clearly new
ideas in trading strategy making. For example, we can
use an increasing H as a trend seeker or inversely a



decreasing H as a turning point in a market
environment. More precisely, we can write typical
conditions of turning points:

(1) Decreasing trend on H
(2) H<0.5 and typical moving averages on H<0.5

Do not forget also the general ‘theorem’ we have
established in [1] (volume 21) concerning the values
of H that we expect to be close to 0.5 in general.
Regarding this proposition, any significant deviation
would be a clear trigger that something new happens.

III.b Building equations — Inverse cubic
law

Returns in financial time series are the most
fundamental inputs to quantitative finance. To a
certain extent, they provide some insights in the
dyvnamical content of the market. In this booklet, we
consider several financial series on futures, using
always a five minutes sampling.

Each future contract is characterized by a price
series S(t), from which we extract the log-returns x(t)
= log[S(t + 1)/S(t)]. The analysis is then driven on
these log-returns x(t).

From standard equations [1] (volumes 4-9) we
know that the distribution of log-returns x(t), namely
P(x), can be written quite generally as

- 1 2 _
P(z) = — exp(—Zw(z)/2)

where w(x) is an objective function and Z a
normalization factor. In particular, it can be shown
easilv that w(x) can be derived by minimizing a
generating functional F[w(x)], subject to some
constraints on the mean value of the objective



function. It reads
F = [dIP(:I‘) log P(z) +w(z)/D — Al

where lambda is an arbitrary constant.

In addition, the expression given in Eq. (1) for
the probability distribution can also be seen as the
outcome of an equation of motion for x(t). From Eq.
(1) and (2), we can express the stochastic process x(t)
as in references [1] (volumes 4-9)

d
— = f(x) + g(z)e(t)

where epsilon(t) (e(t)) is a Gaussian process
satisfving < e(t)e(t’) >= D.delta(t- t") and < e(t) >= o.
Functions f and g depends only on x(t). The
distribution function P(x, t), associated with this
equation of motion is given by the following
Fokker-Planck equaticun (see [1])

OP(z. 1) D .,
I;If. 'll— 52 [ g (x) Pz, .H]——[funPu £)]

We can finally extract the stationary solution for
P(x)

o1 9 Dg% — f
Plz) = 7P |~ 5 / dx J

Whether the above equations can be
related to real data on financial markets is not
granted.

Therefore, we need to compare predictions
derived from these equations to real data. As



mentioned above, we use financial time series on
different futures, using a five minutes sampling. See
also [1] volumes 7 and 9.

In the above equations, functions f and g are not
specified and any choice can be considered. Obviously,
only specific choices will have a chance to get a
reasonable agreement with real data. For example, let
us consider the different cases below:

(i) If f(x) = —x and g(x) = 1, we obtain P(x)Z =
exp(—x2/D), and thus we predict a Gaussian shape for
the log-returns distribution.

(ii) In the more general case where f(x) = K g
dg/dx and g is not constant, we obtain

| 1
P{;PJZ — gg(l_,kf"[]]

and thus we predict non-Gaussian shape for the
log-returns distribution.

Using a specific functional form for g(x), we can
get

|
{ E (. 1 1) 2 .
L_;_ J) ),

i

P(x)Z =

In this case (ii)) P(x) follows the so-called
t-distribution. It depends on one parameter nu to
be fitted on real data, for normalized log-returns.

In Fig. below, we present the log-returns x (five
minutes sampling) for a large set of futures. To
make the comparison, we have scaled x for all futures
to the volatility of the DAX future (FDAX).

On the top of Fig. below, we observe that futures
on DAX, Bund, Yen, Euro, Gold present the same
probability distribution for x, hence P(x) is universal



for all these data series once the wvolatility is
normalized to the same value. On the bottom of Fig.
below, we provide comparisons with futures on
commodities. We observe that data series on CL
(Crude-0il) follows the same P(x) as FDAX, but other
data series on Wheat and NG (Natural Gas) exhibit
some larger tails.

We can use results developed in the previous
section in order to compare with experimental (real)
distributions P(x).
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Above we display the distributions of
Log-returns x (five minutes sampling) for a large set
of futures. To make the comparison, we have scaled x
for all futures to the volatility of the DAX future
(FDAX). Top: we observe that futures on DAX, Bund,
Yen, Euro, Gold present the same probability
distribution for x, hence P(x) is universal for all these
data series once the volatility is normalized to the
same value. Bottom: we observe that data series on
CL (Crude Oil) follows the same P(x) as FDAX, but
other data series on Wheat and NG (Natural Gas)
exhibit some larger tails.

Distributions above can be fitted we obtain
nu=3 and P() as:

1 ‘
Plr) x f oz 0 Y ~ 9




This formula holds for 5 minutes sampled data
for all futures contracts studied! This result is thus
quite universal for small intra-day time scales

III.c Building equations — General view
(small ime scales)

In reference [1] (volume 23), we have extended
this argument to general functional forms. Let us
write e(t) as a Gaussian process satisfving < e(t)e(t’)
>= D.delta(t— t') and < e(t) >= 0. Then a general
expression for a stochastic variable can be:

dx/dt = f(x) + g(x) e(t)

Here, functions f and g depends only on x(). The
distribution function P(x,t) associated with this
equation of motion is given by the following
Fokker-Planck equation (as discussed above):

oP(x.t) & D, 9
i T Ay 2[ g (@) P, !E Or

With specific choices of f() and g() simpler than
D1() and D2() expressions above, we have been able
to describe the data using a very simple function PDF
(with nu=3) for a large variety of future contracts (see
previous section).
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We also observe of the figure above that small
time scales mean below 1 hour (typically), which is in
good agreement with the values extracted from the
factorial moment analysis [1] (volume 20).

Let us consider the inverse formulation of the
problem. We start from an equation of motion for the
stochastic variable x() as:

dx/dt = -gamma x + x k(1) + e(t)

where is gamma a positive constant, k(t) and e(t)
white noise (BM), of zero average and standard
deviations: <k2>=M2 and <e2>=A2. This equation is
more general that in the previous sections as we
consider 2 uncorrelated BM here.

In previous references [1] (volumes 2-6), we
have shown how to start from market equations to
extract practical trading strategies! Thus, the inverse
problem of this section is interesting and efficient to
solve.

Generalizing the expressions given above, we can
write the associated Fokker-Planck equation as:

dP(x,t)/ dt = -d/dx[ gamma x P ] +0.5
d2/dx2[ (A2+M=2x2)/2 P ]

If M2=0, we do not have k() term in the
equation, we find a Gaussian process and if gamma is



also null, then we find back the standard Wiener
process.

In practice, if we write an index q as:
q:=(1+2M2/gamma)/(1+M2/gamma), the data at
small times scales correspond to q around 1.7. This
is a conclusion we can make from the figure above,
when fitting data with the equations above. This
gives typical values for effects beyond the
Wiener process at small time scales (from few
minutes resolution to 1 hour), which generalizes
also the expressions for D1 and D2 given above.

IV. Unfolding

In principle, unfolding is a statistical tool which
allows extracting a true distribution from a
reconstructed (visible) one. In our approach, we have
generalized this view to algorithmic trading with the

simple equivalence: reconstructed == sequence of
prices, true == equity (sequences of trades of the
system).

This is an interesting wayv to present a trading
system (formally). In this booklet, we show very
simplv how to push this idea into practice and
optimization of trading strategies.

Let us define the trading system as: P(t) -> E(t),
where P(t) are the prices and E(t) the cumulative
equity based on the trade sequence. The arrow
represents the triggers of the system: time unit,
trigger decisions, money management etc.

In the transformation (unfolding) P(t) -> E(t),
we expect to transform a Hurst exponent on prices of
about V2 to a Hurst exponent on the equity above V5.
Then, let us rewrite: P(t) [H=1/2] -> E(t) [H>1/2].
This is the trivial aim of the trading system: obtaining
a better persistence once the strategy is built than



before any trigger decisions.

First, this can be checked directly once a strategy
is established and this can be used as a rejection item.

Second, nothing prevents us to follow the
procedure iteratively, namely:

P(t) [H=1/2] -> E@) [H’>1/2] -> E(1)
[H>H’>1/2] -> ...

V. The main trading strategies and their
variations

The main trading strategies are described as well
as the necessary conditions needed to ensure the
qualification of these strategies on any financial data
series. As explained in sections II and III, this is the
second step of the system making process. First, the
idea and the search for any possible signals inside x(t)
based on this idea. This first part can rely on model
building from equations discussed in section III. Once
the idea has been identified, for example repulsion of
the prices by a moving average or trading range
breakout, the system making process follows with the
strategies as encoded in this section (second step).
The third and fourth steps are then the validation of
the strategy and stress tests. These steps are also
discussed below.

Moving-average

Moving-average (MA) trading rules are the most
commonly used and most commonly tested technical
trading strategies. Moving averages are recursively
updated averages of past prices. They vield insight in
the underlying trend of a price series and also smooth
out an otherwise volatile series. In this booklet we use
equally weighted moving averages



n—1
1
MAY = ~ §_ .3 P,
J:

where MA(n)(t) is the moving average at time t
of the last n observed prices. Short (long) term trends
can be detected by choosing n small (large). The larger
n, the slower the MA adapts and the more the
volatility is smoothed out. Technical analysts
therefore refer to a MA with a large n as a slow MA
and to a MA with a small n as a fast MA.

MA trading rules make use of one or two moving
averages. A special case is the single crossover MA
trading rule using the price series itself and a MA of
the price series. If the price crosses the MA upward
(downward) this is considered as a buy (sell) signal.
The double crossover MA trading rule on the other
hand uses two moving averages, a slow one and a fast
one. The slow MA represents the long run trend and
the fast MA represents the short run trend. If the fast
MA crosses the slow MA upward (downward) a buy
(sell) signal is given. The signal generating model is
given by

Posg 1 = 1, if MAF > MA?
Posi.1 = Posy, if MAY = MA}
Posyq = —1, if MA¥ < MA™,

where k < n and Post+1 = —1, 0, 1 means holding
a short, neutral respectively long position in the
market in period t + 1.

Thus, moving average cross-over (MAC-0) rule



compares a short moving average to a long moving
average. The MAC-O rule tries to identify a change in
a trend. There are two categories of the MAC-O rule:
variable length moving average (VMA) and fixed
length moving average (FMA). The FMA stresses that
the returns for a few days following the crossing of
the moving averages should be abnormal. The VMA
generates a buy (sell) signal whenever the short
average is above (below) the long average.

In this booklet, we call the single and double
crossover MA rules described above, the basic MA
trading rules. These basic MA rules can be extended
with a per cent-band filter, a time delay filter, a fixed
holding period and a stop-loss. The per cent-band
filter and time delay filter are developed to reduce the
number of false signals. In the case of the per
cent-band filter, a band is introduced around the slow
MA. If the price or fast MA crosses the slow MA with
an amount greater than the band, a signal is
generated; otherwise the position in the market is
maintained. This strategy will not generate trading
signals as long as the fast MA is within the band
around the slow MA. The extended MA model witha b
per cent filter is given by

Posyy = 1 if MAF = (1+5) M A7
Posir = Posg, if (1=b)MA? < MAY < (14+b) A7
PU&53|1 — _1 if _1L_||.rd4.:c “ |.I_ _b_'_‘ll-f_"‘i::-

According to the time delay filter a signal must
hold for d consecutive days before a trade is
implemented. If within these d days different signals
are given, the position in the market will not be
changed. A MA rule with a fixed holding period holds
a long (short) position in the market for a fixed



number of f days after a buy (sell) signal is generated.
After f days the market position is liquidated and a
neutral market position is held up to the next buy or
sell signal. This strategy tests whether the market
behaves different in a time period after the first
crossing. All signals that are generated during the
fixed holding period are ignored. The last extension is
the stop-loss. The stop-loss is based on the popular
phrase: Let yvour profits run and cut yvour losses short.
If a short (long) position is held in the market, the
stop-loss will liguidate the position if the price rises
(declines) from the most recent low (high) with x per
cent. A neutral market position is held up to the next
buy or sell signal.

Trading range break-out

Qur second group of trading rules consists of
trading range break-out (TRB) strategies, also called
support-and-resistance strategies. The TRB strategy
uses support and resistance levels. If during a certain
period of time the price does not fall below (rise
bevond) a certain price level, this price level is called a
support (resistance) level. According to technical
analysts, there is a battle between buyers and sellers
at these price levels.

The market buys at the support level after a price
decline and sells at the resistance level after a price
rise. If the price breaks through the support
(resistance) level, an important technical trading
signal is generated. The sellers (buvers) have won the
battle. At the support (resistance) level the market
has become a net seller (buver). This indicates that
the market will move to a subsequent lower (higher)
level. The support (resistance) level will change into a
resistance (support) level. To implement the TRB
strategy, support- and-resistance levels are defined as



local minima and maxima of the closing prices. If the
price falls (rises) through the local minimum
(maximum) a sell (buy) signal is generated and a
short (long) position is taken in the market. If the
price moves between the local minimum and
maximum the position in the market is maintained
until there is a new breakthrough. The TRB strategy
will also be extended with a per cent-band filter, a
time delay filter, a fixed holding period and a
stop-loss. The basic TRB strategy, extended with a per
cent-band filter, is described by
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Filter rule

The final group of trading strategies we test is
the group of filter rules, introduced by Alexander
(1061). These strategies generate buy (sell) signals if
the price rises (falls) by x per cent from a previous low
(high). We implement the filter rule by using a so
called moving stop-loss. In an upward trend the
stop-loss is placed below the price series. If the price
goes up, the stop-loss will go up. If the price declines,
the stop-loss will not be changed.

If the price falls through the stop-loss, a sell
signal is generated and the stop-loss will be placed
above the price series. If the price declines, the
stop-loss will decline. If the price rises, the stop-loss
is not changed. If the price rises through the stop-loss
a buy signal is generated and the stop-loss is placed
below the price series. The stop-loss will follow the
price series at x per cent distance. On a buyv (sell)
signal a long (short) position is maintained. This
strategy will be extended with a time delay filter and a



fixed holding period.
Bootstrapping

Bootstrapping is a technique wherein generally a
new series of asset prices are created by the random
reordering of the original series. In general, we
consider 300 random arrangements of the original
series as it is sufficient to prove statistical
significance. Moving average rules, range breakout
triggers and filter rules are applied to each of the new
series. The profits of the original series are compared
to the distribution of results from the numerous
random series.

In this method no assumptions are made about
the volatility of the assets over time, or about the
distribution of the asset prices. Only the price changes
from data are randomly reshuffled keeping the exact
same starting and ending values of the time series so
that each of the new series will have identical
distributional properties to those of the original
series. In particular, a simple buy and hold strategy
over the full period provides the same profit or loss
for all data and pseudo-data series.

Once each new random series is generated, the
technical trading rules are applied and profits
calculated. This now creates an empirical distribution
of profits on which the original profits can be
compared and measured. If profits from the original
series are above a percent cut off level then they can
be stated as significant. The null hypothesis in this
situation is that there is no information for making
excess returns in the original time series. This is
rejected of course if the profits on the original series
are significant compared to the distribution of profits.



More preciselv (see also [1]): the process
described above generates an empirical distribution of
profits. The profits calculated on the original data sets
are then compared to the profits from the randomly
generated data sets. A simulated p-value is produced
by computing the proportion of returns generated
from the simulated series that is greater than the
return computed with the actual series.

The null and alternative hypotheses are given by:
(Ho) the trading rules provide no useful information;
(H1) the trading rules provide useful information.

The resulting p-value from the bootstrapping
simulation reads as follow: if the original return has a
rank of 100, then the return is the highest of any of
the randomly generated returns, and has a
corresponding p-value of 0.00. A rank of fifty reveals
that half of the randomly generated returns were
greater than the original return, resulting in a p-value
of 0.50... In general, we consider as reasonable
strategies, those where p-values are below 0.05 (5 per
cent). Then, we consider that (Ho) can be rejected and
(H1) validated. In strict statistical terms, the last
statement is not correct as detailed in [1]. However,
we are much interested by the practical use of
concepts than the pure academic (sterile)
formulations.

Stress tests

As discussed in [2], robustness testing needs to
be performed to mitigate the effects of data mining
and to further analyze the significance of the trading
rule profits. To test the returns for robustness,
returns will be calculated on three sub-periods of the
original data. The sub-periods are determined by



arbitrarily dividing the data sets into thirds and then
testing for structural breaks between the subsets. The
Chow Test can be used to test for structural breaks
[2]. The subsets are used to test for robustness if the
parameters of each subset are determined to be
non-stationaryv. Three new subsets are selected if the
parameters of the subsets are constant. The returns
from each trading rule and the buyv-and-hold strategy,
along with the Sharpe ratio, are computed for each
sub-period. Consistent excess returns and stable
Sharpe ratios across the sub-periods are associated
with robust returns. In addition, a large number of
stress tests on parameters of the strategy can be
thought of in order to ensure its internal robustness.
See [2] for details.
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